Sekolah Tinggi Ilmu Ekonomi Indonesia Jakarta

WORKSHOP STATISTIK MODUL EVIEWS

Disusun oleh: Hendryadi, SE., MM

Digunakan untuk Bahasan Ajar Mata Kuliah Workshop Statistik Tahun 2021 - 2022

DAFTAR ISI

BAB 1 PENGENALAN EVIEWS BAB 2 MODEL REGRESI SEDERHANA BAB 3 MODEL REGRESI BERGANDA DAN ASUMSI KLASIK BAB 4 REGRESI DATA PANEL

BUKU PEDOMAN

Gujarati, D. N. (2021). *Essentials of econometrics*. Sage Publications. Widarjono, A. (2016). Pengantar dan Aplikasinya disertai Panduan Eviews. *Yogyakarta: UPP STIM YKPN*.

BAB I PENDAHULUAN

Materi Pokok

- Jenis Data
- Pengenalan EVIEWS
- Manajemen Data

1.1. Klasifikasi Data Berdasarkan Waktu Pengumpulannya

Data menurut waktu pengumpulannya dikelompokkan menjadi tiga yaitu crosssection, time series dan data panel.Data cross-section, yaitu data yang dikumpulkan pada suatu waktu tertentu (*at a point of time*) yang dapat menggambarkan keadaan/kegiatan pada waktu tersebut.Misalnya, perusahaan mengumpulkan data penjualan pada tahun tertentu sehingga dapat diperoleh gambaran mengenai kondisi penjualan pada tahun tersebut.

Lokasi	Sepeda Motor	Mobil				
Jakarta	250	102				
Bekasi	52	22				
Bogor	100	41				
Sukabumi	26	20				
Solo	57	35				

Tabel 1.1.Data Cross-Section Penjualan Sepeda Motor dan Mobil Bulan Januari 2016

Data berkala (time series), yaitu data yang dikumpulkan dari waktu ke waktu untuk memberikan gambaran tentang perkembangan suatu kegiatan selama periode spesifik yang diamati.Data berkala sering kali disebut pula sebagai data historis. Contohnya, data perkembangan jumlah nasabah bank syariah selama 3 bulan terakhir, perkembangan saham di Jakarta Islamic Index selama seminggu terakhir, fluktuasi IHSG (Indeks Harga Saham Gabungan) selama 1 bulan terakhir, dan sebagainya (lihat contoh Tabel 1.2)

Tabel 1.2.Data Time Series Penjualan Sepeda Motor PT. AMS Periode 2016

Bulan	Unit Terjual
Januari	27
Februari	12
Maret	10
April	21

Mei	57
Juni	65
Juli	22
Agustus	26

Data panel adalah data gabungan time series dan cross-section. Contoh data penjualan sepeda motor di dua wilayah yaitu Jakarta dan Bekasi (lihat Tabel 1.3).

Daerah	Tahun	Unit Terjual
Jakarta	2011	2700
	2012	1200
	2013	1000
	2014	2100
	2015	5700
	2016	6500
Bekasi	2011	2200
	2012	2600
	2013	2800
	2014	3600
	2015	4400
	2016	5200

Tabel 1.3. Data Panel Penjualan Sepeda Motor PT. AMS Periode tahun 2011 – 2016

1.2. Pengenalan EVIEWS

EVIEWS merupakan program aplikasi yang banyak digunakan dalam pendidikan, pemerintahan dan dunia industri. EViews, yang merupakan singkatan Econometric Views. Meskipun sebagian besar EViews dirumuskan oleh ekonom, program itu sendiri juga dapat digunakan dalam bidang-bidang studi, seperti sosiologi, statistik, keuangan, dan lainnya.

EViews memanfaatkan tampilan "user-friendly", yang memudahkan pengguna untuk menjalankan perintah untuk analisis data.Kegunaan EVIEWS antara lain adalah analisis data dan evaluasinya, analisis financial, peramalan ekonomi makro, simulasi, peramalan penjualan dan analisis biaya.Versi terbaru dari EVIEWS (sampai dengan Juli 2016) adalah versi 9.

Menurut pengamatan di lapangan, saat ini sudah ada beberapa buku pedoman analisis data menggunakan EVIEWS, meski jumlah judul yang beredar masih sangat jauh dibandingkan dengan penggunaan IBM SPSS.

Membuka program EVIEWS

Jika EVIEWS sudah terinstall dengan baik baik, untuk membuka program EVIEWS cukup klik Program Files \rightarrow All Program \rightarrow EVIEWS 8, dan pilih EVIEWS

R and a state	
Windows Update	^
🛹 XPS Viewer	
Accessories	
AnyBizSoft	
퉬 Avance Sound Manager	
BannerDesignerPro	
Boxoft PDF to WORD (freeware)	
퉬 CamStudio 2.7	=
Doupons Coupons	
b doPDF 7	
l drivers	
EViews 8	
EViews 8 Command Reference	
EViews 8 Getting Started	
EViews 8 Object Reference	
😡 EViews 8 User's Guide I	
词 EViews 8 User's Guide II	
🖡 EViews 8	
EViews Example Files	
ReadMe - documentation updates	-
4 5 4	
I Back	

Atau, jika sudah tersedia Shortcut di menu Desktop, maka cukup Klik 2x Icon

Tampilan awal EVIEWS 8

- EViens. File Edit Object View Proc Quick Options Add-ins Window Help

1.3. Manajemen Data

a. Menu Awal

Keterangan:

- Create a new EVIEWS workfile : untuk membuat file baru
- Open an existing EVIEWS workfile : membuka file kerja (workfile) EVIEWS
- Open a Foreign file (such as excel) : untuk membuka file dalam bentuk lain (misalnya Excel)
- b. Import Data
 - Untuk membuka file, pilih File -> Open -> Foreign data as Workfile
 - Cari lokasi file, (contoh ini sudah mengcopy file latihan) ke Drive C sehingga dapat dipilih di C:\DATA EVIEWS\BAB 1, pilih file Demo.XLS

• Ketika EViews terbuka "Demo.XLS", ia menentukan bahwa file dalam format file Excel, menganalisis isinya, dan membuka Excel Read wizard.

Halaman pertama wizard berisi pratinjau data yang ditemukan di spreadsheet. Dalam kebanyakan kasus, kita tidak perlu khawatir tentang salah satu opsi di halaman ini. Dalam kasus yang lebih rumit, kita dapat menggunakan opsi di halaman ini untuk menyediakan rentang sel yang sesuai untuk dibaca, atau untuk memilih lembar kerja yang berbeda di lembar kerja Excel.

De	mo			Satu	SASI.	
Custo	mirange					8
De	00134\$1:\$E	\$101		first call	95101	0
	305	11	- 215	110		3
1952-1	87.876	0.1975607	129.537	1 612662		6
1917:3	09.625	0.2001787	129.305	1.020647		
1952:4	92.875	0.2012459	128.617	1.928667		
1953:1	94_625	0.2010517	130.587	2.047535		
1953:2	95.55	0.2014442	130.341	2.202667		
1953:3	95.425	0.2022359	131,389	2.021667		
+20214	84.075	0.2034164	130.173	1.093667		

Halaman kedua wizard berisi berbagai pilihan untuk membaca data Excel.. Dalam kebanyakan kasus, Anda cukup mengklik Finish untuk menerima pengaturan default. Dalam kasus lain di mana jendela pratinjau tidak menampilkan data yang diinginkan dengan benar, Anda dapat mengklik Next dan menyesuaikan opsi yang muncul di halaman kedua wizard. Dalam contoh kita, data tampak benar, jadi kita klik Finish untuk menerima pengaturan default.

Saat kita menerima pengaturan, EViews secara otomatis membuat workfile untuk menampung data, dan mengimpor seri ke dalam workfile. Workfile berkisar antara tahun 1972 kuartal 1 hingga 2016 kuartal 4, dan berisi lima seri (OBS observasi, PDB = produk domestic bruto, SBI = suku bunga indonesia, INS = inflasi, dan UB = uang beredar). Ada juga dua objek, yaitu koefisien vektor

C dan seri RESID, yang secara otomatis dibuat oleh EVIEWS.

Membuat Grup Data

Pilih semua series (dengan cara memblok series data kecuali series C), klik kanan, dan pilih Open / as Group. EViews akan membuka rangkaian series data yang dipilih dalam tampilan spreadsheet.

Grup data digunakan untuk menggabungkan berbagai data series sehingga lebih mudah di analisis.

Jika dilakukan dengan bener, maka akan tampil satu grup data yang berisi semua series data yang sudah dipilih tadi.

/lew Proc Object Range: 1972Q Sample: 1972Q	t Save Freeze Details+/- 2016Q4 - 180 obs 2016Q4 - 180 obs	Show Feb	ch Store Delete Genr Filter.* Order: Name
C ins obs pdb resid sbi	0.000		ar Group
€) Untitled	Copy Copy Special Paste Paste Special	Ctrl+C Ctrl+V	as Equation as Factor as VAR as System as Multiple series
	Manage Links & Formula Fetch from DB Update from DB Store to DB Export to file	•	
	Rename Delete	_	

Pada grup data, klik "Name", kemudian ketik "Data". Lalu klik OK untuk menyimpan series group yang baru kita buat.

View Proc D	bject Save	Freeze Details	+/- Show Fet	tch Store Delete	Genr
Range: 197 Sample: 197	201 20160 201 20160	4 - 180 obs 4 - 180 obs		Fi Order: N	iter: * lame
ins c ₩ ins					
pape	G Group	UNTITLED Wo	nifile DATA 1:	Untitled\	- 0 X
shi	View Proc	Object Print	Name Preeze	Default +	Sart Edit+/-
e ub	and an other states of the sta	IN45	OBS	PDB	RES
		INS	OBS	S PDB	RE -
	197201	1.640000	19720	1 87.87500	1
	197202	1.677667	197203	2 88.12500	
	197203	1.828667	197203	89.62500	
++ Untitle	197204	1.923667	19720-	4 92.87500	
	1973Q1	2.047333	19730	94.62500	
	197302	2.202667	19730	95.56000	
	197303	2.021667	197303	3 95.42500	
	1973Q4	1.486333	1973Q	4 94,17500	
	1974Q1	1.083667	19740	1 94.07500	
	197402	0.814333	1974Q	2 94.20000	
	197403	0.869667	1974Q	95.45000	
	1974Q4	1.036333	19740	97.36375	
	1975Q1	1.256333	19750	1 100.7250	
	197502	1.614333	197503	2 102.8250	
	1975Q3	1.861333	19750	3 104.9250	
	1975Q4	1	101		

c. Menyimpan Workfile

Untuk menyimpan workfile, Klik FILE \rightarrow Save as \rightarrow kemudian pilih Folder lokasi penyimpanan. Dalam contoh ini, kita menyimpan pada posisi sama dengan file Excel yaitu di folder Bab 1. Ketik "Latihan 1", abaikan pilihan yang lain, kemudian klik Save.

Organize * New folder			10 · 0
Videos	2 Name		Date modifies
👎 Computer	64 den	10	3/6/2007 12:0
🏭 Windows7 (Ci)			
DATA INTERNET (Dr)	100		
DATA KERIA 02 (E)	10		
OVD RW Drive (F.)	1		
- Removable Disk (Ht)	11		
CD Drive (1) BOUTI BL1			
💁 Network	(* (* <u></u>	in .	
File name: data 1			
A CONTROL OF A CONTRACT OF A C	10124070		

Tutup program Eviews untuk lanjut ke proses berikutnya.

BAB 2 REGRESI SEDERHANA

Materi Pokok

- Regresi Sederhana
- Contoh Kasus Penjualan

2.1. Regresi Sederhana

Analisis regresi merupakan salah satu teknik statistik yang paling populer di masa sekarang ini. Teknik ini menggunakan hubungan historis antara independen dan variabel dependen untuk memprediksi nilai masa depan variabel dependen. Dalam konteks riset bisnis, analisis regresi banyak digunakan untuk memprediksi return saham, harga saham, nilai tukar mata uang, kinerja keuangan perusahaan, tingkat penjualan, dan berbagai hal yang berhubungan peramalan dependen variabel berdasarkan nilai tertentu dari independen variabel. Dalam perkembangannya, analisis regresi telah berkembang menjadi berbagai bentuk dan metode estimasi, namun yang akan dibahas pada buku adalah regresi linier sederhana, regresi linier berganda, regresi logistic, regresi dengan variabel moderator, dan regresi dengan variabel moderator.

Regresi Linier Sederhana

Regresi linier sederhana merupakan teknik analisis bivariate yang digunakan untuk memprediksi nilai variabel dependen (Y) berdasarkan nilai variabel independen (X). Sebagai analisis regresi yang paling sederhana, regresi linier sederhana (simple regression analysis) hanya menggunakan satu variabel independen dan satu variabel dependen dalam model yang ingin diuji.

Asumsi Regresi Linier Sederhana

- Variabel independen dan Dependen minimal berskala interval rasio
- Hubungan antara independen (X) dan dependen (Y) adalah linier
- Residual berdistribusi normal

Persamaan Regresi

Persamaan regresi sederhana biasa ditulis dengan :

Y = a + bX + e

Y adalah variabel dependen, X adalah variabel independen, a adalah konstanta (atau nilai Y jika X bernilai nol), dan b (beta) adalah koefisien X, kemiringan garis regresi atau dapat diinterpretasikan sebagai perubahan Y untuk setiap perubahan X. e adalah istilah kesalahan, kesalahan dalam memprediksi nilai Y (lebih banyak tidak ditampilkan dalam persamaan regresi).

2.2. Contoh Kasus

Seorang peneliti menggunakan OLS sederhana untuk mengetahui pengaruh harga terhadap penjualan sepeda motor.

Persamaan struktural yang diuji adalah Y = $\beta_0 + \beta_1 + e$

- Y = penjualan
- X = harga

Prosedur dalam EViews

1. Aktifkan workfile EViews: Klik File - Open - Foreign data as workfile

1 - 2 - March 10	The local division of				
View Proc	Quick Opti	ons	Add-ins Window Help		
		•			
			EViews Workfile Ctrl+C		
Save Ctrl+S Save As		Foreign Data as Workfile			
		ľ	Database		
			Programs		
Import •		•	Programs in Add-ins folder		
			Text File		
	View Proc	View Proc Quick Opti Ctrl+	View Proc Quick Options		

2. Buka file Excel yang tersedia di Folder BAB 2, yaitu DATA2.XLS

L Open			
🕒 🕞 🖝 📕 🦇 Windows7 (C:) 🔹 DATA EVI	EWS + BAB 2	• ++ Search BAR 2	٩
Organize = New folder		. H	
🔆 Favorites	* Name		Date modif
E Desktop	64 basics		16/29/2007 1
Downloads	the DATA2		1/7/2010 1
34 Recent Places	MI PANEL		1/7/2018 1
The Advantage			
Decoments			
A Maric			
Pictures			
Videos			
Computer			
Windows7 (C:)			
DATA INTERNET (DI)		(M*).	
File name: DATA2		· Allfles (M)	
	El Honore deficito	descion Dees	Canad
	Copuse newsra	prectory Upen	Cancel

- 3. Pada pilihan Excel Read Wizard, Klik NEXT dan FINISH untuk membiarkan setting default
- 4. Tampilan Workfile setelah berhasil di buka

😕 EV	/iews		-		-						
File	Edit	Object	View	Proc	Quick	Opt	tions	Add-ir	ns W	indow	Help
	Workf	ile: DATA	2 - (c:\	data ev	iews\bab	1\d	lata2.w	f1)	-	- x	ן
Vie	wProc	Object	Save	Freeze	Details+	/-][Show	Fetch	Store	Delete	Ī
Ra	nge: 1	132	32 obs						I	Filter: *	
Sa	mple: 1	32 1	32 obs						Order:	Name	

5. Membuat Persamaan Struktural

New Page

BB c M no M prie

 \sim

 \sim

4 14

price resid

sales

Data2

Selanjutnya adalah membuat persamaan struktural, yaitu dengan memilih Quick \rightarrow Estimate Equation, sehingga tampil form equation estimation berikut ini:

Equation Estimation
Specification Options
Equation specification
Dependent variable followed by list of regressors including ARMA and PDL terms, OR an explicit equation like $Y=c(1)+c(2)$ *X.
1
Estimation settings
Method: LS - Least Squares (NLS and ARMA)
Sample: 134
OK Cancel

Pada box, ketik persamaan struktural log(sales) c log(price)¹

¹ Log adalah fungsi logaritma natural yang digunakan untuk menghitung elastisitas model linier. Selain itu, fungsi log dilakukan untuk menstandarisasi data (jika nilai X dan Y memiliki perbedaan yang sangat besar yang terkadang menyebabkan nilai

Klik OK

6. Hasil

Dependent Variable: LOG(SALES) Method: Least Squares Date: 01/07/18 Time: 15:43 Sample: 1 32 Included observations: 32

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C LOG(PRICE)	7.958282 -0.351902	0.223843 0.081382	35.55299 -4.324083	0.0000 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.383954 0.363420 0.071560 0.153626 40.01748 18.69769 0.000156	Mean deper S.D. depend Akaike info Schwarz cri Hannan-Qu Durbin-Wa	ndent var dent var criterion terion tinn criter. tson stat	6.991914 0.089690 -2.376093 -2.284484 -2.345727 1.629203

Interpretasi : Dari hasil regresi, diperoleh persamaan Y = 7.958 - 0.351 PRICE

konstanta menjadi negatif). Kegunaan lain dari fungsi Log adalah untuk menormalkan data.

Pada contoh regresi penjualan sepeda motor dilihat dari nilai koefisien adalah negative sesuai dengan teori, atau semakin tinggi harga maka akan menurunkan tingkat permintaan / penjualan sepeda motor.

Koefisien b1 sebesar – 0.351 menandakan bahwa kenaikan 1% maka penjualan akan menurun sebesar 0.351%. Nilai p-value 0.0002 (< 0.01) membuktikan bahwa pengaruh harga terhadap penjualan signifikan di level 1%.

R-square sebesar 0.384 (dibulatkan menjadi 0.35) menandakan bahwa kemampuan harga menjelaskan variasi penjualan sebesar 35%, dan sisanya 65% dijelaskan oleh faktor lain di luar model.

7. Menyimpan persamaan struktural

Untuk menyimpan persamaan struktural yang sudah dibuat, pada menu, klik "NAME", kemudian ketik nama "EQ1"

Equation: UNTITLE	D Workfile	e: DATA	2::Data2\				- 0	x
View Proc Object Pr	intName	Freeze	Estimate	Forecast	Stats	Resids		
Dependent Variable: LOG(SALES) Method: Least Squares Date: 01/07/18 Time: 15:43 Sample: 1 32 Included observations: 32								
Variable	Coeffi	icient	Std. Err	or t-S	Statisti	c F	rob.	
C LOG(PRICE)	7.95 -0.35	8282 1902	0.22384 0.08138	43 35 32 -4.3	.5529 32408	90. 30.	0000	
R-squared Adjusted R-square S.E. of regression Sum squared resi Log likelihood F-statistic Prob(F-statistic)	Dbject Nam	e dentify o	abeling tab	24 cha or few les and gra Ca	racters er reco aphs (c	s maximu mmende	im, 16	

8. Menguji Normalitas residual

Untuk menguji normalitas residual model regresi, klik dua kali series "RESID" sehingga tampil seperti gambar berikut :

View Proc Object Say	Series Series	RESID Workfile D	ATA2:Data2	V			-	S X
Range: 132 - 32 of Sample: 132 - 32 of	View Pro	Citizent Properties	Print Nam	e Freeze	Default	Se	rt Ede+/-	Smpl-
00 -				E SAD				
no price	-	Last	updated 01	07/18-15	543			- (4
rasid								
S sales	1	-0.023868						12
0	2	0.017797						- 13
	3	0.043436						
	4	0.057438						
	5	0.025637						
	B -	0.144670						
Distant / Marine Barry	7	-0.061231						
LIT Darry V. Dative Call	8	-0.080955						
	8	-0.073131						
	10	0.048675						
	11	0.019032						
	12	0.031809						
	13.	-0.041801						
	14	0.080263						
	15	-0.043976						
	15	-0.017203						
	17	0.058574						
	18	-0.061554						
	19	-0.075549						
	20	-0.085218						
	: 21	•				18		

Pada menu VIEWS, pilih Descriptive Statistics & Test \rightarrow Histogram and Stats

🔀 Serie	es: RESID Workfile	: DAT	A2::D	ata2∖						- 1		x
View	oc Object Propert	ties][Print	Nam	e Freeze	De	fault 🔻	So	rt∐Edit∙	+/-]	Sm	pl+
Spr	eadSheet				ESID							
Gra	ph											
Des	SpreadSheet Graph Descriptive Statistics & Tests One-Way Tabulation Correlogram Long-run Variance Unit Root Test Variance Ratio Test					15:43		_				Ê.
Des	criptive statistics o	x res	LS .	_		togra	m and stat	5				L
One	e-Way Tabulation.				Sta	ts Tab	ole					E
Cor	relogram				Sta	ts by (Classificatio	on				
Lon	ig-run Variance				Sin	nple H	lypothesis	Tests				
Uni	t Root Test				Equality Tests by Classification							
Vari	Variance Ratio Test			5								
BDS	Independence Te	st				pinca	i Distributi	JIII	515		_	Ι.
				-								
Lab	el											
12	0.031809											
13	-0.041801											
14	0.080263											
15	-0.043976											
16	-0.017203											
17	-0.058574											
18	-0.061554											
19	-0.075549											
20	-0.085218											Ŧ
21	•						III				Þ.	н

Hasil output Histogram

Pendekatan uji normalitas residual menggunakan residual histogram merupakan pendekatan grafis yang paling sederhana. Jika grafik histogram residual menyerupai grafik distribusi normal (berbentuk lonceng ditengah) maka distribusi residual dinyatakan normal. Dalam kasus ini terlihat grafik tidak membentuk lonceng sehingga tidak bisa diputuskan.

Pendekatan yang lain adalah menggunakan Uji-Jarque Bera (JB). Untuk dinyatakan normal nilai p value (probability) harus lebih besar dari 0.05 (p value > 0.05). Artinya, jika p value JB signifikan maka kita gagal menolak hipotesis bahwa residual berdistribusi normal. Hasil pada output di atas menunjukkan nilai p value sebesar 0.184 (> 0.05) sehingga dapat disimpulkan residual hasil regresi penjualan sepeda motor mempunyai distribusi normal.

9. Membuat Scatter-Plot

Scatter plot digunakan untuk melihat apakah ada hubungan linier antara variabel bebas dengan variabel terikat. Masih menggunakan data yang sama, lakukan langkah-langkah berikut :

Blok Series data "PRICE" dan "SALES", kemudian klik kanan, pilih "OPEN" dan "AS GROUP"

Workfile: DATA2 - (c:\dat	a eviews\bab1\data2.wf1	.) _ 🗆	x			
View Proc Object Save Fre	eze Details+/- Show F	etch Store De	lete			
Range: 1 32 32 obs	er: *					
Sample: 1 32 32 obs		Order: Na	ime			
B c ■ eq1 M no	_					
resid	Open	•	i	as Group		
M sales	Comu	Chillio C	i	as Equation		
	Сору	Ctri+C	ä	as Factor		
	Copy Special	~	i	as VAR		
	Paste	Ctrl+V		as System		
Data2 / New Page /	Paste Special			as Multiple series		
	Manage Links & For	mulae				
	Fetch from DB					
	Update from DB					
	Store to DB					
	Export to file					
	Rename					
	Delete					

Sehingga muncul series data baru sebagai berikut :

G Grou	ip: UNTITLED V	Vorkfile: DATA2:	:Data2\ _	= x
View	oc Object Prin	t Name Freeze	Default 👻	Sort
	PRICE	SALES		
1	15.18521	1071.834		
2	13.04601	1178.767		
3	19.69415	1046.217		
4	13.55889	1078.601		
5	19.47274	1031.857		
6	11.50116	1398.910		
7	14.84979	1040.674		
8	13.52124	1045.114		
9	15.98417	1002.065		
10	17.49779	1096.399		
11	18.00752	1053.674		
12	19.58283	1036.188		
13	16.88112	1014.282		-
14	40 54707	4000 454		
40	•			

Klik Name, kemudian biarkan namanya tetap "GROUP01" sebagai default. Klik "QUICK", kemudian pilih "GRAPH", maka akan tampil Series list berikut:

Kemudian pada menu Graph Options, Pilih "SCATTER" dan setting pada FIT LINES menjadi "REGRESSION LINE"

Graph Options Option Pages Graph Type Basic type Frame & Size Carbon Elements Carbon Elements Cuick Fonts Templates & Objects	Graph type General: Basic graph Specific: Line & Symbol Bar Spike Area Area Band Mixed with Lines Dot Plot Error Bar High-Low (Open-Close) Scatter XY Line XY Area Pie Distribution Quantile - Quantile	Details Graph data: Fit lines: Axis borders: Multiple series:	Raw data Regression Line None Single graph	Options v
Undo Page Edits	Quantile - Quantile Boxplot		ОК	Cancel

Klik OK

Tampilan pada scatter plot memperlihatkan garis lurus yang memperlihatkan kenaikan harga sepeda motor akan menurunkan penjualan sepeda motor. Dalam kasus ini, nilai β 1 sebesar -0.35 (slope) yang berarti setiap penurunan 1% harga sepeda motor maka akan meningkatkan penjualan sepeda motor sebesar 0.35%².

² Kondisi hubungan linier antara jumlah penjualan dan harga ini dalam realitas sulit ditemui, karena penurunan harga tidak selalu ditandai dengan jumlah penjualan yang meningkat, dan sebaliknya. Karena ada banyak variabel lain yang mempengaruhi model penjualan atau permintaan sebuah produk

BAB 3 REGRESI BERGANDA

Materi Pokok

- Regresi Berganda
- Contoh Kasus

3.1. Regresi Berganda

Regresi berganda merupakan model regresi yang memiliki lebih dari satu variabel independen. Teknik ini adalah kelanjutan dari regresi sederhana yang sudah kita bahas sebelumnya. Regresi berganda mencoba untuk menjelaskan variasi perubahan variabel Y karena dalam kenyataannya model regresi sederhana tidak mencerminkan perilaku ekonomi sesungguhnya. Seperti contoh Bab sebelumnya, permintaan sepeda motor tidak hanya dipengaruhi oleh harga, namun juga bisa dipengaruhi oleh faktor lainnya, misalnya pendapatan konsumen, kualitas produk, promosi, selera, dan lainnya.

Analisis regresi berganda digunakan untuk menjelaskan suatu variabel respon (variabel terikat / dependent) menggunakan lebih dari satu variabel input (variabel bebas, independent variable / eksogen). Persamaan regresi ganda dinotasikan sebagai berikut :

 $Y = a + b_1X_1 + b_2X_2 + b_3X_3 \dots B_kX_i + e$

(Yadalah variabel respon, a = konstanta, b = parameter regresi)

Asumsi Regresi Linier Berganda

Asumsi yang harus dipenuhi dalam regresi ganda adalah asumsi klasik (multikolinieritas, heterokedastisitas, autokorelasi). Dua asumsi lain adalah normalitas galat (residual) dan linieritas.

3.2. Contoh Kasus

Seorang manajer penjualan salah satu agen sepeda motor ingin mengetahui pengaruh biaya promosi, jumlah gerai penjualan, dan harga terhadap jumlah unit motor yang terjual dalam 3 tahun terakhir. Data diambil dari bulan Januari 2015 sampai dengan Desember 2017.

Penyelesaian dengan EViews

Prosedur penyelesaian kasus untuk regresi berganda sama dengan penjelasan sebelumnya, dimana kita memiliki raw data sebagai berikut :

	Cut	NV I	Arial	• 10 • A	
Pa	aste ↓	mat Painter	BI <u>U</u>	- 🖉 -	<u>A</u> -] (≣ ≣
	Clipboar	d 😡	F	ont	G.
	G32	- (● f _×		
	Α	В	С	D	E
1	PERIODE	PROMO	GERAI	HARGA	SALES
2	Jan-15	95.00	30	15.19	7214
3	Feb-15	93.00	25	13.05	7892
4	Mar-15	85.00	28	14.69	6875
5	Apr-15	94.00	21	13.56	7412
6	May-15	90.00	22	12.47	7950
7	Jun-15	95.00	30	11.50	8175
8	Jul-15	92.00	32	14.85	7800
9	Aug-15	92.00	30	13.52	8000
10	Sep-15	95.00	28	14.52	7542
11	Oct-15	90.00	26	13.28	7600
12	Nov-15	75.00	25	14.01	7254
13	Dec-15	95.39	32	13.58	8135
14	Jan-16	95.00	25	12.88	8125
15	Feb-16	85.00	28	13.52	7210
16	Mar-16	100.00	32	14.42	8700
17	Apr-16	100.00	35	15.83	8300
18	May-16	85.00	24	16.35	6456
19	Jun-16	95.00	28	15.55	7200
20	Jul-16	75.00	24	15.46	6824
04	A 40	05.00	05	45.04	0075

Tahapan Uji EViews :

- Uji Regresi
- Uji Asumsi Klasik
- Uji Hipotesis Serentak (Uji Wald)
- Uji Stabilitas (Uji Chow)
- Uji Model Simultan
- Uji Parsial

1. Import Data

Aktifkan workfile EViews: Klik File - Open - Foreign data as workfile

🕹 EViews	
File Edit Object View Proc Quick Options	Add-ins Window Help
New 🕨	
Open 🔸	EViews Workfile Ctrl+0
Save Ctrl+S	Foreign Data as Workfile
Save As	Database
Close	Programs
Import	Programs in Add-ins folder
Export	Text File

- 2. Buka file Excel yang tersedia di Folder BAB 3, yaitu DATA3.XLS
- 3. Pada pilihan Excel Read Wizard, Klik NEXT dan FINISH untuk membiarkan setting default
- 4. Tampilan Workfile setelah berhasil di buka

<mark>&</mark> E	Views	14 1	-									
File	Edit	Object	View	Proc	Quick	Options	Add-ir	ns W	indow	Help		
	Wor	kfile: DAT/	43 - (c:\	data ev	iews\ba	b 3\data3	.wf1)					x
V	ew	oc│Object	Save	Freeze	Details	+/-][Sho	wFetch	Store	Delete	Genr	Sample	
R	ange:	2015M01	1 2017N	112	36 obs	;					Filt	er: *
S	ample	:2015M01	2017	/12	36 obs	;				0	Order: Na	ame
2	c C	- :										- 1
	n ger har	ai ga										- 1
	peri	iode										
	resi	id										
	🛆 sale	es										
1	N Da	ta3 Ne	w Page	7								
			n'i age	/								

5. Membuat Persamaan Struktural

Selanjutnya adalah membuat persamaan struktural, yaitu dengan memilih Quick → Estimate Equation, sehingga tampil form equation estimation berikut ini:

Equation Estimation	
Specification Options	
- Equation specification	
Dependent variable followed by list of regressors including ARMA and PDL terms, OR an explicit equation like $Y = c(1)+c(2)$ *X.	
1	
Estimation settings	
Method: LS - Least Squares (NLS and ARMA)	
Sample: 134	
OK Cancel	

Pada box, ketik persamaan struktural

log(sales) c log(promo) log(gerai) log(harga)

E	Equation Estimation
	Specification Options CEquation specification
	Dependent variable followed by list of regressors including ARMA and PDL terms, OR an explicit equation like $Y = c(1) + c(2)^{*X}$.
	log(sales) c log(promo) log(gerai) log(harga)
l	-Estimation settings-
l	Method: LS - Least Squares (NLS and ARMA)
	Sample: 2015M01 2017M12
	OK Cancel

Klik OK

6. Hasil

Equation: UNTITLED	Workfile: DAT	A3::Data3\					x
View Proc Object Prin	t Name Freeze	Estimate	Forecast	Stats	Resids		
Dependent Variable: LC Method: Least Squares Date: 01/08/18 Time: 1 Sample: 2015M01 2011 Included observations:	DG(SALES) 10:14 7M12 36						
Variable	Coefficient	Std. Erro	or t-S	statisti	c Pi	rob.	
C LOG(PROMO) LOG(GERAI) LOG(HARGA)	8.232121 0.318162 0.153884 -0.469155	0.52953 0.10250 0.06022 0.09266	0 15 6 3.1 6 2.5 4 -5.0	.54608 03833 555107 062956	8 0.0 3 0.0 7 0.0 6 0.0	0000 0040 0156 0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.688217 0.658987 0.046984 0.070641 61.12411 23.54512 0.000000	Mean depe S.D. deper Akaike info Schwarz cr Hannan-Q Durbin-Wa	endent va ndent var o criterior riterion uinn crite atson sta	ar 1 er. t	8.91: 0.08 -3.17 -2.99 -3.11 1.90	3672 0458 3562 7615 2152 5753	

7. Menyimpan persamaan struktural

Untuk menyimpan persamaan struktural yang sudah dibuat, pada menu, klik "NAME", kemudian ketik nama "EQ1" (Interpretasi akan dibahas kemudian)

8. UJI ASUMSI: Normalitas residual Untuk menguii normalitas residual model regresi

Untuk menguji normalitas residual model regresi, klik dua kali series "RESID".

Pada menu VIEWS, pilih Descriptive Statistics & Test \rightarrow Histogram and Stats

🔀 Series	s: RESID Workfile: DA	TA2::Data2	L Contraction of the second se			-	= x
View Pro	oc Object Properties	Print Nam	e Freeze	Default	▼ Sor	t Edit+/-	Smpl+
Spre	adSheet		ESID				
Grap	oh						
· · · ·			07/18 - 15	:43			^
Desc	criptive Statistics & Te	sts 🕨 🕨	Histo	gram and S	Stats		
One	-Way Tabulation		Stats	Table			E
Corr	Correlogram		Stats by Classification				
Long	g-run Variance		Simple Hypothesis Tests				
Unit	Root Test		Equality Tests by Classification				
Varia	ance Ratio Test						
BDS	Independence Test		Empirical Distribution Tests				
	independence result						
Labe	el						
12	0.031809						
13	-0.041801						
14	0.080263						
15	-0.043976						
16	-0.017203						
17	-0.058574						
18	-0.061554						
19	-0.075549						_
20	-0.085218						Ŧ
21	•				111		▶

Pendekatan uji normalitas residual menggunakan residual histogram merupakan pendekatan grafis yang paling sederhana. Jika grafik histogram residual menyerupai grafik distribusi normal (berbentuk lonceng ditengah) maka distribusi residual dinyatakan normal. Dalam kasus ini terlihat grafik tidak membentuk lonceng sehingga tidak bisa diputuskan.

Pendekatan yang lain adalah menggunakan Uji-Jarque Bera (JB). Untuk dinyatakan normal nilai p value (probability) harus lebih besar dari 0.05 (p value > 0.05). Artinya, jika p value JB signifikan maka kita gagal menolak hipotesis bahwa residual berdistribusi normal. Hasil pada output di atas menunjukkan nilai p value sebesar 0.137 (> 0.05) sehingga dapat disimpulkan residual hasil regresi penjualan sepeda motor mempunyai distribusi normal.

9. UJI ASUMSI: MULTIKOLINIERITAS

Pertama, blok variabel bebas yaitu GERAI, HARGA, dan PROMO. Kemudian Klik QUICK \rightarrow GROUP STATISTICS \rightarrow CORRELATION

😣 EViews	
File Edit Object View Proc	Quick Options Add-ins Window Help
File Edit Object View Proc Workfile: DATA3 - (c:\data ev View Proc Object Save Freeze Range: 2015M01 2017M12 Sample: 2015M01 2017M12 Ø c C Ø gerai Imaga graph01 harga Periode	Quick Options Add-ins Window Heip Sample Generate Series -
promo	Estimate VAR Correlations
resid	Cross Correlogram
V Sales	Johansen Cointegration Test
Data3 / New Page /	Granger Causality Test

Series List			×
-List of series, groups, ar	nd/or ser	ries expressions-	
gerai harga promo			
OK		Cancel	
ОК		Cancel	

View Proc Object Print Name Freeze Sample Sheet Stats Spec								
Correlation								
	GERAI	HARGA	PROMO					
GERAI	1.000000	0.204692	0.423335					
HARGA	0.204692	1.000000	-0.291865					
PROMO	0.423335	-0.291865	1.000000					

Hasil korelasi antar variabel bebas terlihat tidak ada hubungan yang tinggi (> 0.90) antara variabel bebas, sehingga dapat kita simpulkan model terbebas dari masalah multikolinieritas.

10. UJI ASUMSI: AUTOKORELASI

Kembali ke objek EQ1. Aktifkan persamaan dengan menglik 2x objek EQ1.

Klik VIEW \rightarrow RESIDUAL DIAGNOSICS \rightarrow SERIAL CORRELATION LM TEST

Equation: EQ01 Workfile: DATA3::Data3\ _ = = ×								x
View Proc Object Print N	lame	Freeze	Estimate	Forecast	Stats	Resids		
Representations								
Estimation Output								
Actual, Fitted, Residual		- +						
ARMA Structure								
Gradients and Derivativ	es	•	Std. Err	or t-S	Statisti	c F	Prob.	
Covariance Matrix		E	0.5295	30 15	5460	8 0	0000	
Coefficient Diagnostics		Þ	0.10250	06 3.1	10383	3 0	.0040	
Residual Diagnostics		•	Correlo	gram - Q	-statis	tics		
Stability Diagnostics		•	Correlogram Squared Residuals					
Label		_	Histogr	ram - Nor	mality	Test		
	0.04	10904	Serial C	orrelation	i LM T	est		
Sum squared resid	0.07	70641 12411	Heteros	skedastici	ty Test	ts		
F-statistic	23.5	54512	Durbin-W	atson sta	t	1.90	5753	_
Prob(F-statistic)	0.00	00000						

Biarkan setting default Lag 2, kemudian klik OK

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	2.181940	Prob. F(2,30)	0.1304
Obs*R-squared	4.571651	Prob. Chi-Square(2)	0.1017

Pengujian Hipotesis Autokorelasi

- a. H₀ = tidak ada korelasi serial (serial correlation)
 H₁ = ada korelasi serial (serial correlation)
- b. Jika p value Obs*R-square < α (0.05), maka Ho ditolak Jika p value Obs*R-square > α (0.05), maka Ho diterima
- c. Hasil menunjukkan nilai p value Obs*R-square $0.107 > \alpha$ (0.05), maka Ho diterima, artinya tidak ada korelasi serial atau model terbebas dari masalah autokorelasi

11. UJI ASUMSI: HETEROKEDASTISITAS

Untuk menguji heterokedastisitas, Klik VIEW \rightarrow RESIDUAL DIAGNOSICS \rightarrow HETEROSKEDASTICITY TESTS

Equation: EQ01 Workfile: D	ATA3::Da	ta3\				- 🗆	x
View Proc Object Print Name	Freeze	Estimate	Forecast	Stats	Resids	;]	
Representations	M.	Test:					
Estimation Output		Brob E/2	20)			0 4 2 0 4	=
Actual, Fitted, Residual	•	Prob. Chi	.30) -Square(2	2)		0.1304 0.1017	_
ARMA Structure	H						
Gradients and Derivatives	•						
Covariance Matrix							
Coefficient Diagnostics	•						
Residual Diagnostics	•	Correlo	gram - Q	-statis	tics		-1
Stability Diagnostics	•	Correlo	gram Squ	ared F	Residua	als	1
Label		Histogr	am - Nor	mality	Test		
		Serial C	orrelation	LM T	est		
C -0.3 LOG(PROMO) 0.0	370233)88101	Hetero	skedastici	ty Tes	ts		
LOG(GERAI) -0 ()41113	0.06138	32 -0 6	6979	4 (0.5081	

Breusch-Pagan-Godfrey Harvey Glejser ARCH White Custom Test Wizard	Dependent variab The Breusch-Paga regresses the squ original regressors	le: RESID^2 n-Godfrey Test ared residuals on the by default.
Regressors: c log(promo) log(gerai) log(ha	rga) 🔺	7
		Add equation regressors
	-	

Biarkan pilihan pada Breusch-Pagan-Godfrey³, kemudian Klik OK

³ Uji lainnya bisa dipilih adalah Uji WHITE

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic	1.075356	Prob. F(3,32)	0.3734
Obs*R-squared	3.296947	Prob. Chi-Square(3)	0.3481
Scaled explained SS	4.010412	Prob. Chi-Square(3)	0.2603

Pengujian Hipotesis Heteroskedastisitas

- a. H₀ = tidak ada heteroskedastisitas
 - H₁ = ada heteroskedastisitas
- b. Jika p value Obs*R-square < α (0.05), maka Ho ditolak Jika p value Obs*R-square > α (0.05), maka Ho diterima
- c. Hasil menunjukkan nilai p value Obs*R-square 0.3481 > α (0.05), maka Ho diterima, artinya tidak ada heteroskedastisitas dalam model regresi.

12. UJI STABILITAS: UJI CHOW

Uji stabilitas CHOW test biasanya uji tambahan khususnya data series. Asumsi yang mendasarinya adalah perubahan perilaku konsumene tidak tetap dari waktu ke waktu, karena biasanya adalah faktor-faktor pengganggu. Dalam contoh ini misalnya, tahun 2016 pemerintah mengeluarkan kebijakan pembayaran uang DP untuk kredit sepeda motor sebesar 30% yang diduga mempengaruhi penjualan sepeda motor. Dengan demikian, kita perlu menguji stabilitas data (perubahan struktural model regresi) menggunakan uji CHOW.

Untuk mengujinya, Klik VIEW \rightarrow STABILITY DIAGNOSICS \rightarrow CHOW BREAK POINT TEST

Equation: EQ01 Workfile: DATA3::Data3\ _								
View Proc Object Print Name	Freeze	Estimate	Forecast	Stats Resids				
Representations						*		
Estimation Output Actual,Fitted,Residual ARMA Structure Gradients and Derivatives	53 00 00	76 Prol 85 Prol 16 Prol	b. F(9,26) b. Chi-Sqi b. Chi-Sqi	uare(9) uare(9)	0.8571 0.8019 0.6870	Ш		
Covariance Matrix	_							
Residual Diagnostics	•							
Stability Diagnostics	•	Chow	Breakpoin	t Test	1			
Label		Quand Multin	t-Andrew	s Breakpoint T pipt Test	est			
C LOG(PROMO) ⁴ 2	1.55 0.05	Chowl	Forecast T	est				
LOG(PROMO)*LOG(GERAI) LOG(PROMO)*LOG(HARGA) LOG(PROMO)	0.04 -0.00 -0.67	Recurs	y RESET T ive Estima	est ites (OLS only)				
LOG(GERAI)^2 LOG(GERAI)*LOG(HARGA)	-0.01 0.00	Levera Influen	ge Plots Ice Statisti	cs				
LOG(GERAI) LOG(HARGA)^2 LOG(HARGA)	-0.09 -0.0192 0.0852	30 0. 86 0.	068671 749612	-0.280027 0.113773	0.7817 0.9103	Ŧ		

Ketik 2016 sebagai Breakpoint dates

Chow Tests	×
-Enter one or more breakpoint dates-	
2016	
Regressors to vary across breakpoints	
c log(promo) log(gerai) log(harga)	
OK Cancel	

Klik OK

Chow Breakpoint Test: 2016M01 Null Hypothesis: No breaks at specified breakpoints Varying regressors: All equation variables Equation Sample: 2015M01 2017M12

F-statistic	0.234129	Prob. F(4,28)	0.9168
Log likelihood ratio	1.184393	Prob. Chi-Square(4)	0.8807
Wald Statistic	0.936515	Prob. Chi-Square(4)	0.9193

Pengujian Hipotesis Perubahan Struktural

- a. H_0 = tidak ada perubahan struktural H_1 = ada perubahan struktural
- b. Jika p value F test / LR < α (0.05), maka Ho ditolak Jika p value F test / LR > α (0.05), maka Ho diterima
- c. Nilai p-value untuk F Statistics (0.9168) dan p value untuk LR (log likelihood rasio) sebesar 0.8807 sehingga dapat kita simpulkan Ho diterima atau tidak ada perubahan struktural dalam model regresi.
- 13. UJI F SIGNIFIKANSI MODEL

Setelah berbagai uji dilakukan, maka selanjutnya adalah menguji signifikansi model. Aktifkan output dengan meng-klik VIEWS \rightarrow ESTIMATION OUTPUT

Equation: EQ01 Workfile: D	ATA3::Da	ata3\				
View Proc Object Print Name	Freeze	Estimate	Forecast	Stats	Resids	
Representations						
Estimation Output						
Actual, Fitted, Residual						
ARMA Structure						
Gradients and Derivatives	- • T	Std. Err	or t-S	Statisti	c F	Prob.
Covariance Matrix	F	0.52053	20 15	5460	<u>ه</u> ۵	0000
Coefficient Diagnostics	•	0.10250	06 3.1 26 24	10383 55510	30 70	.0040
Residual Diagnostics	•	0.09266	64 -5.0	06295	6 0	.0000
Stability Diagnostics	- • =	Moon don	ondonty	or.	0.01	12672
Label		S.D. depe	ndent va	r	0.08	30458
Sum squared resid 0.0	40964 70641	AKAIKE INT Schwarz (o criterioi criterion	n	-3.1/	73562
Log likelihood 61.	12411	Hannan-O	Quinn crit	er.	-3.11	12152
F-statistic 23. Prob(F-statistic) 0.0	54512 00000	Durbin-W	atson sta	it	1.90)5753

Hasil Regresi

Dependent Variable: LOG(SALES) Method: Least Squares Date: 01/08/18 Time: 10:14 Sample: 2015M01 2017M12 Included observations: 36

Variable	Coefficient	Std. Error t-Stat		Prob.
C LOG(PROMO) LOG(GERAI) LOG(HARGA)	8.232121 0.318162 0.153884 -0.469155	0.529530 0.102506 0.060226 0.092664	15.54608 3.103833 2.555107 -5.062956	0.0000 0.0040 0.0156 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.688217 0.658987 0.046984 0.070641 61.12411 23.54512 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		8.913672 0.080458 -3.173562 -2.997615 -3.112152 1.905753

Nilai F statistic adalah sebesar 23.545 dengan p value 0.000 (< 0.01) sehingga dapat kita simpulkan secara bersama-sama promo, gerai, dan harga berpengaruh signifikan terhadap penjualan sepeda motor.

Nilai adj. R-Square adalah sebesar 0.659 (dibulatkan 0.66) memberikan informasi bahwa kemampuan promo, gerai, dan harga menjelaskan variasi penjualan adalah sebesar 66%, dan sisanya 34% dipengaruhi faktor lain diluar model.

Persamaan regresi

14. UJI PARSIAL

Uji parsial dalam EViews dapat langsung dilihat dari nilai t statistic dan p value. Seperti tampilan output terlihat bahwa seluruh variabel bebas terbukti berpengaruh signifikan terhadap penjualan.

- a. Promo berpengaruh positif dengan koef 0.318 (p value 0.004)
- b. Gerai berpengaruh positif dengan koef 0.153 (p value 0.015)
- c. Harga berpengaruh negative dengan koef -0.469 (p value 0.000)

Catatan Akhir :

Pemilihan model fungsi Regresi, apakah menggunakan fungsi linier atau Log-linier dapat diuji dengan pengujian Sketergram, atau metode lain seperti Mackinnon, White dan Davidson (MWD). Namun dalam praktik buku-buku ekonometrik, log-linier lebih umum digunakan (seperti buku Gujarati dan Porter, 2012, "basic econometrics", Wooldridge (2000), Introductory Econometrics: A Modern Approach; Greene (2008), Econometric Analysis, 6th Edition). Bahasan lebih lanjut dapat dipelajari dari buku-buku di atas.

⁴ Interpretasi sama seperti penjelasan Bab sebelumnya

BAB 4 REGRESI DATA PANEL

Materi Pokok

- Regresi Data Panel
- Contoh Kasus

Regresi Data Panel

Regresi data panel merupakan teknik regresi yang menggabungkan data time series dengan cross section. Keunggulan regresi data panel menurut Wibisono (2012) antara lain:

- 1) Panel data mampu memperhitungkan heterogenitas individu secara ekspilisit dengan mengizinkan variabel spesifik individu;
- Kemampuan mengontrol heterogenitas ini selanjutnya menjadikan data panel dapat digunakan untuk menguji dan membangun model perilaku lebih kompleks;
- 3) Data panel mendasarkan diri pada observasi cross-section yang berulang-ulang (time series), sehingga metode data panel cocok digunakan sebagai study of dynamic adjustment;
- 4) Tingginya jumlah observasi memiliki implikasi pada data yang lebih informative, lebih variatif, dan kolinieritas (multiko) antara data semakin berkurang, dan derajat kebebasan (degree of freedom/df) lebih tinggi sehingga dapat diperoleh hasil estimasi yang lebih efisien;
- 5) Data panel dapat digunakan untuk mempelajari model-model perilaku yang kompleks;
- 6) Data panel dapat digunakan untuk meminimalkan bias yang mungkin ditimbulkan oleh agregasi data individu.

Dengan keunggulan tersebut, maka implikasi pada regresi data panel adalah tidak harus dilakukannya pengujian asumsi klasik dalam model data panel (Verbeek, 2000; Gujarati, 2009; Wibisono, 2005; Aulia; 2004:27).

Model Estimasi

Widarjono (2007:251-252) menjelaskan beberapa metode yang bisa digunakan dalam mengestimasi model regresi dengan data panel, yaitu :

1) Common Effect

Teknik yang digunakan dalam metode *Common Effect* adalah menggabungkan data *time series* dan *cross section*. Dengan menggabungkan kedua jenis data tersebut, maka metode OLS dapat digunakan untuk mengestimasi model data panel. Dalam pendekatan ini tidak memperhatikan dimensi individu maupun waktu, dan dapat diasumsikan bahwa perilaku data antar perusahaan sama dalam berbagai rentang waktu. Asumsi ini jelas sangat jauh dari realita sebenarnya, karena karakteristik antar perusahaan baik dari segi kewilayahan jelas sangat berbeda.

Persamaan untuk metode common effectadalah sebagai berikut:

$$Y_{it} = \alpha + \beta X_{it} + \epsilon_{it}$$

Dimana:

i merupakan jumlah objek (*cross section*) t merupakan jumlah periode (*time series*)

2) Fixed Effect

Metode*Fixed Effect* menggunakan variabel *dummy* untuk menangkap adanya perbedaan intersep. Metode ini mengasumsikan bahwa koefisien regresi (*slope*) tetap antar perusahaan dan antar waktu, namun intersepnya berbeda antar perusahaan namun sama antar waktu (*time invariant*). Namun metode ini membawa kelemahan yaitu berkurangnya derajat kebebasan (*degree of freedom*) yang pada akhirnya mengurangi efisiensi parameter.

Persamaan untuk metode fixed effect dapat ditulis sebagai berikut:

$$Y_{it} = \alpha + \beta X_{it} + y_2 W_{2i} + y_3 W_{3i} + \dots + y_N W_{Ni} + \delta_2 Z_{i2} + \delta_3 Z_{i3} + \dots + \delta_T Z_{iT} + \varepsilon_{it}$$

Di mana :

Y _{it}	= Variabel terikat untuk individu ke – i dan waktu ke - t
X _{it}	= Variabel bebas untuk individu ke – i dan waktu ke – t
W _{it} dan Z _{it}	= Variabel dummy
W _{it}	= 1 ; untuk individu i; i = 1,2,,N
	= 0 ; lainnya
Z _{it}	= 1 ; untuk periode t; t = 1,2,,T
	= 0 ; lainnya

3) Random Effect

Tenik yang digunakan dalam Metode *Random Effect* adalah dengan menambahkan variabel gangguan (*error terms*) yang mungkin saja akan muncul pada hubungan antar waktu dan antar kabupaten/kota. Teknik metode OLS tidak dapat digunakan untuk mendapatkan estimator yang efisien, sehingga lebih tepat untuk menggunakan *Metode Generalized Least Square* (GLS).

MetodeRandom Effect dapat dijelaskan dengan persamaan berikut:

$$\begin{split} Y_{it} &= \alpha + \beta X_{it} + \mathcal{E}_{it} \\ \text{dengan} \\ \mathcal{E}_{it} &= u_i + v_t + w_{it} \\ \text{Di mana :} \\ u_i &\sim \text{N} (0, \sigma_u^2) = \text{Komponen cross sectionerror} \\ v_t &\sim \text{N} (0, \sigma_v^2) = \text{Komponen time serieserror} \\ w_{it} &\sim \text{N} (0, \sigma_w^2) = \text{Komponen error kombinasi} \end{split}$$

$$(4.4)$$

Pengujian Pemilihan Model

Untuk menentukan model apa yang paling tepat dipilih untuk melakukan pemilihan model regresi data panel, kita dapat melakukan dua pengujian. Pengujian pertama

digunakan untuk memilih antara pendekatan *common effect* atau pendekatan *fixed effect*. Pengujian kedua digunakan untuk memilih antara pendekatan *fixed effect* atau pendekatan *random effect*.Untuk menguji persamaan regresi dari model di atas maka digunakan beberapa cara pengujian adalah sebagai berikut:

a. Memilih Pengujian Antara Common Effect dan Pendekatan Fixed Effect

Untuk melakukan pemilihan antara pendekatan *common effect* dan pendekatan *fixed effect* dilakukan uji Chow. Hipotesis untuk mengujian ini adalah sebagai berikut:

H₀: Pendekatan *common effect* (*restricted*)

H₁: Pendekatan *fixed effects* (*unrestricted*)

b. Memilih Pengujian Antara Fixed Effect dan Random Effect

Secara formal, untuk memilih antara pendekatan *fixed effect* atau pendekatan *random effect*, dilakukan Uji Hausman. Uji Hausman menguji apakah asumsi-asumsi dari pendekatan *fixed effect* mengenai *random effect* yang tidak berkorelasi dengan variabel bebas dapat terpenuhi atau tidak. Uji Hausman ini dapat dilakukan dengan menggunakan *software* E-views.

Hipotesis untuk pengujian ini adalah sebagai berikut:

H₀: tidak ada mis-spesifikasi (gunakan random effect)

H₁: ada mis-spesifikasi (gunakan *fixed effect*)

Untuk tingkat α = 5%, maka hipotesis nol akan ditolak jika *probabilitycross-section random* pada pengujian ini lebih kecil dari 5%. Jika hipotesis nol ditolak, maka pendekatan yang tepat digunakan adalah pendekatan efek tetap. Tetapi jika gagal menolak hipotesis nol maka pendekatan efek acak harus digunakan.

Pengujian Hipotesis

Ketepatan fungsi regresi sampel dalam menaksir nilai aktual dapat diukur dari *goodness of fit* nya.Secara statistik, setidaknya ini dapat diukur dari nilai statistik t, nilai statistik F, dan nilai koefisien determinansi (R2).Perhitungan statistik disebut signifikan secara statistik, apabila uji nilai statistiknya berada dalam daerah kritis (daerah dimana Ho ditolak).Sebaliknya, disebut tidak signifikan bila uji nilai statistiknya berada dalam daerah dimana Ho diterima.

1) Uji Signifikansi Parameter Individual (Uji-T)

Uji ini dilakukan untuk mengetahui signifikansi variabel independen secara individu terhadap variabel dependennya. Adapun hipotesis pada uji t ini adalah sebagai berikut :

H0 : β 1 = 0 (tidak terpengaruh)

Ha : $\beta 1 \neq 0$ (berpengaruh)

Jika nilai t hitung lebih besar dibandingkan dengan niai t tabel maka H0 ditolak artinya terdapat pengaruh secara individu variabel independen terhadap variabel dependennya, begitu juga sebaliknya.Disamping melihat t hitung, dapat juga dilihat nilai probabilitas. Pengambilan keputusan berdasarkan probabilitas adalah sebagai berikut : Jika probabilitas > 0,05, maka H0 diterima, dan Jika probabilitas < 0,05, maka H0 ditolak.

2) Koefisien determinasi (R²)

Pengukuran ini bertujuan mengetahui atau mengukur seberapa baik garis regresi yang dimiliki. Dengan kata lain mengukur seberapa besar proporsi variasi variabel dependen dijelaskan oleh semua variabel independen (Widarjono, 2010)

R² memiliki beberapa kelemahan yaitu nilainya akan semakin besar ketika variabel independen ditambah, hal tersebut bisa berakibat buruk karena variabel yang ditambahkan belum tentu mempunyai justifikasi atau pembenaran dari teori ekonomi (Widarjono, 2012) . Untuk mengatasi permasalahan tersebut maka digunakan nilai *adjusted* R2. Maksud dari kata disesuaikan adalah karena koefisien R² disesuaikan dengan derajat kebebasan (df), dimana mempunyai df sebesar n-k dan sebesar n-1. Nilai dari R² disesuaikan ini sama dengan nilai R² biasa, yaitu berkisar antara 0-1. R² yang disesuaikan diformulasikan sebagai berikut :

$$R^2 = 1 - \frac{RSS/(n-k)}{TSS/(n-1)}$$

dimana : k = jumlah parameter termasuk intersep dan n = jumlah observasi

3) Uji Signifikansi

Pengujian signifikansi model menggunakan uji F. Uji F dilakukan untuk mengetahui pengaruh semua variabel independen terhadap variabel dependen.Persamaan model secara manual dirumuskan dengan uji kebermaknaan koefisien determinasi dengan statistik uji F sebagai berikut :

$$F = \frac{(n-k-1)R^2 y x_k}{k(1-R^2 y x_1)}$$

Keterangan :

```
n = \sum sampel
```

 $k = \sum$ observasi independen, R²yx k = R Square

dimana k menunjukkan banya variabel penyebab dalam model yang dianalisis, n menunjukkan ukuran sampel. Hipotesis statistiknya dirumuskan sebagai berikut

 $H0: \beta 1 = \beta 2 = \dots = \beta k = 0$

Ha : $\beta 1 \neq \beta 2 = \dots \neq \beta k \neq 0$

Jika F hitung lebih besar dari F tabel, maka H0 ditolak, demikian juga sebaliknya.

1.1. Tahap Uji

Untuk memilih model yang paling tepat digunakan dalam mengelola data panel, terdapat beberapa pengujian yang dapat dilakukan yakni:

1. Uji Chow.

Chow test yakni pengujian untuk menentukan model *Fixed Effet* atau *Random Effect* yang paling tepat digunakan dalam mengestimasi data panel. Chow test (Uji Chow) yakni pengujian untuk menentukan model *Fixed Effet* atau *Random Effect* yang paling tepat digunakan dalam mengestimasi data panel.

Hipotesis dalam uji chow adalah:

- H0 : Common Effect Model atau pooled OLS
- H1 : Fixed Effect Model

Dasar penolakan terhadap hipotesis diatas adalah dengan membandingkan perhitungan F-statistik dengan F-tabel. Perbandingan dipakai apabila hasil F hitung lebih besar (>) dari F tabel maka H0 ditolak yang berarti model yang paling tepat digunakan adalah *Fixed Effect Model*. Begitupun sebaliknya, jika F hitung lebih kecil (<) dari F tabel maka H0 diterima dan model yang digunakan adalah *Common Effect Model* (Widarjono, 2009).

Tahapan Uji dengan EVIEWS

- Double Click pada Estimation Model FE.
- Klik View.
- Pilih Fixed/Random Effects Testing\
- Terakhir klik Redundant Fixed Effects Likelihood Ratio
- 2. Uji Hausman

Uji Hausman dapat didefinisikan sebagai pengujian statistik untuk memilih apakah model *Fixed Effect* atau *Random Effect* yang paling tepat digunakan. Pengujian uji Hausman dilakukan dengan hipotesis berikut:

H0 : Random Effect Model

H1: Fixed Effect Model

Tahapan Uji dengan EVIEWS

- Double Click pada Estimation Model RE.
- Klik View.
- Pilih Fixed/Random Effects Testing\
- Terakhir klik Hausman Test.
- 3. Uji Lagrange Multiplier.

Ujji Lagrange Multiplier (LM Test) dilakukan ketika model yang terpilih pada Uji Hausman adalah REM. Untuk mengetahui apakah model *Random Effect* lebih baik daripada metode *Common Effect* (OLS) digunakan uji Lagrange Multiplier (LM).

Lagrange Multiplier (LM) adalah uji untuk mengetahui apakah model *Random Effect* atau model *Common Effect* (OLS) yang paling tepat digunakan. Uji signifikasi *Random Effect* ini dikembangkan oleh Breusch Pagan. Metode Breusch Pagan untuk uji signifikasi *Random Effect* didasarkan pada nilai *residual* dari metode OLS.

Hipotesis yang digunakan adalah :H0 : Common Effect ModelH1 : Random Effect Model

Tahapan Uji

- *Double Click* pada *Estimation Model* CE. Kemudian jendela *Equation* CE akan terbuka;
- Klik View;
- Pilih Actual, Fitted, Residual;
- Terakhir klik *Actual, Fitted, Residual Table*.

Uji LM ini didasarkan pada distribusi *chi-squares* dengan *degree of freedom* sebesar jumlah variabel independen. Jika nilai LM statistik lebih besar dari nilai kritis statistik *chi-squares* maka kita menolak hipotesis nul, yang artinya estimasi yang tepat untuk model regresi data panel adalah metode *Random Effect* dari pada metode *Common Effect*. Sebaliknya jika nilai LM statistik lebih kecil dari nilai statistik *chi-squares* sebagai nilai kritis, maka kita menerima hipotesis nul, yang artinya estimasi yang digunakan dalam regresi data panel adalah metode *Common Effect* bukan metode *Random Effect* (Widarjono, 2009).

PEDOMAN TUTORIAL DI YOUTUBE

V13 Eviews 12 Student Version Free InstalasI: <u>https://youtu.be/RoNB4zMgGGY</u>

V14 EViews 12 Input Data: <u>https://youtu.be/UzntFfElSuQ</u>

V15 Eviews Regresi Sederhana: https://youtu.be/S4Ftq9d86mU

V20 EViews tutorial: Regresi Berganda: <u>https://youtu.be/Z6gi7Klcw7Q</u>

V26 Eviews Tutorial: Regresi Data Panel Part 1: <u>https://youtu.be/5S2NbBi-uwE</u>

V26 Tutorial EViews Regresi Data Panel Part 2 <u>https://youtu.be/Te0pljDslVw</u>